Install Pytorch
On AGX
Source: https://forums.developer.nvidia.com/t/pytorch-for-jetson-nano-version-1-4-0-now-available/72048
I followed this page to install and my Jetpack version is v4.3
I am going to install PyTorch v1.3.0
Commands
Download the whl file.
wget https://nvidia.box.com/shared/static/phqe92v26cbhqjohwtvxorrwnmrnfx1o.whl -O torch-1.3.0-cp36-cp36m-linux_aarch64.whl
Install this whl file
sudo -H python3 -m pip install numpy torch-1.3.0-cp36-cp36m-linux_aarch64.whl
Install torchvision; so git clone it for my vision.
They provided us a list.
PyTorch v1.0 - torchvision v0.2.2
PyTorch v1.1 - torchvision v0.3.0
PyTorch v1.2 - torchvision v0.4.0
PyTorch v1.3 - torchvision v0.4.2
PyTorch v1.4 - torchvision v0.5.0So we can know that the version should be installed by v0.4.2
sudo apt-get install libjpeg-dev zlib1g-dev
git clone --branch v0.4.2 https://github.com/pytorch/vision torchvision
cd torchvisionInstall it.
sudo -H python3 setup.py install
Install pillow
sudo -H python3 -m pip install 'pillow<7'
Check
```
>>> import torch
>>> print(torch.__version__)
>>> print('CUDA available: ' + str(torch.cuda.is_available()))
>>> print('cuDNN version: ' + str(torch.backends.cudnn.version()))
>>> a = torch.cuda.FloatTensor(2).zero_()
>>> print('Tensor a = ' + str(a))
>>> b = torch.randn(2).cuda()
>>> print('Tensor b = ' + str(b))
>>> c = a + b
>>> print('Tensor c = ' + str(c))
>>> import torchvision
>>> print(torchvision.__version__)
```
On Desktop
We can directly follow the commands from Pytorch official website.
Installation
Environmnet setting:
OS: Ubuntu 18.04 CDUA: 10.0 cuDNN: 7.6. Version table:
torch | torchvision |
---|---|
1.5.0 | 0.6.0 |
1.4.0 | 0.5.0 |
1.3.1 | 0.4.2 |
Install torch
and torchvision
:
python3 -m pip install torch==1.4.0 torchvision==0.5.0 -f https://download.pytorch.org/whl/torch_stable.html
Note : you can also decide the specific cuda version and choose to install the cpu or gpu version. Please follow the instructions of official website.
For example, my CUDA version is 10.0
.
Command:
pip3 install torch==1.4.0+cu100 torchvision==0.5.0+cu100 -f https://download.pytorch.org/whl/torch_stable.html
Uninstall
sudo -H python3 -m pip uninstall torch torchvision
Check
Use python3
to check.
The code from here.
from __future__ import print_function
import torch
x = torch.rand(5, 3)
print(x)
Check the gpu whether it works or not.
import torch
torch.cuda.is_available()
Should be return True